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THE PROBLEM OF THE SOLID CYLINDER COMPRESSED
BETWEEN ROUGH RIGID STAMPS
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Abstract-Since the attempt of Filon in 1902 to solve the title problem the solution then obtained was apparently
not essentially improved. Present work offers such an improvement for alliength--{jiameter ratio's larger than 0·1.
The eigenfunction technique of Little and Childs is further developed into a method, such that the stress-singu
larities at the circumference of the end-planes can be incorporated. Presence of these singularities prevented some
other methods to deliver reliable results.

1. INTRODUCTION

MUCH attention has been paid to the determination of the stress distribution in solid semi
infinite and finite circular cylinders with stress-free curved surfaces and with given stresses
or given displacements at the plane ends. Apparently a satisfactory solution for the solid
cylinder compressed between rough rigid stamps does not yet exist. This is the more
remarkable since this kind of loading seems to be important for solid cylinders, while the
mathematical formulation of the problem is, of course, most simple.

As early as 1902 Filon [1J gave an approximate solution by replacing the boundary
condition for the radial displacements at the ends into a boundary condition for the radial
displacements of the circumference of the end planes only and some reasonably looking
assumption on the shear stresses at the end planes. In 1944 Pickett [2J gave a solution
by using the Fourier method. To obtain the coefficients in the Fourier series he had to solve
an infinite set oflinear equations. The approximate solution of these equations did not lead
to satisfactory results in the neighbourhood of the circumference of the end planes.

It is probable that more investigators have tried to obtain a solution for such an obvious
problem. Whatever method is used, one has to solve an infinite set of linear equations and
most attempts to solve such a set will have shown bad convergence. This is due to a
stress-singularity at the circumference of the end planes, which affects the results for the
stresses also in regions inside the cylinder. Some investigators will have been aware of the
presence of such a singularity and its character, others perhaps not.

By the little known work of Knein [3J in 1927 and the work of Williams [4J attention
has been drawn in literature to the existence and character of the singularities:

p-.O:a = Recp-a, 0< Rea < 1 (1.1 )

where in this case a is a stress along a plane end of the cylinder, p a distance from the
circumference, a an exponent which is identified with the "character" of the singularity and
c the coefficient which determines its "strength".
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In the present work existing methods to deal with semi-infinite and finite solid cylinders
were investigated as to the possibility to adapt them in such a way that for the compressed
cylinder the stress-singularity and the associated convergence-difficulties could be con
quered. All these methods require for all boundary conditions of practical importance the
solution of an infinite set of equations. This is not necessary, if, and only if, the boundary
conditions are such that the problem can be transformed into a problem for a cylinder
infinite in length (to both sides).t

There are two important classes of methods:
1. Fourier analysis methods such as that of Pickett [2] and of Valov [5].
2. Solutions in the form of eigenfunction expansions. To obtain the participation

factors in these expansions, Lurje [6] used the method of least squares, Schiff [7],
Nuller [8] and Little and Childs [9] employed (bi) orthogonality relations between
these eigenfunctions.t

Further methods have been formulated by Horvay and Mirabel [11] and by Mendelson
and Roberts [12].

From all these methods, which have proved to be successful in solving the problems with
boundary conditions for which they were applied, the work of Little and Childs [9] was
thought to be most suitable to start the development of the present method.

Of course the question what has been done previously for the corresponding plane
problem presents itself. In fact the work of Knein [3J concerns such a problem. Benthem
[13], Miklowitz [14J, Vorovich and Kopasenko [15], deal with semi-infinite clamped
strips loaded in their plane in such a way that the stress-singularities in the corners are
fully analyzed. However, the adaptation of these methods to the axisymmetric problem
meets with great, if not insurmountable difficulties.

The present study was prompted by tests on cylindrical rock-pieces performed by the
Mining Department of the University of Technology, Delft.

2. MATHEMATICAL FORMULATION

Both a semi-infinite cylinder, occupying the region r ::;; 1, 0 ::;; Z < 00, and a finite
cylinder, occupying the region r ::;; 1, -tL ::;; z ::;; tL will be considered. The cylinders are
loaded axisymmetrically, without torsion. The normal stresses are (Jr' (J4>' (Jz and Trz is
the non-zero shear stress. The non-zero displacements in radial and axial direction are,
respectively, u and w.

The curved surfaces of both cylinders are free of stresses:

r = 1: (Jr = 0,

The conditions at the plane ends are:
for the semi-infinite cylinder

(2.1)

z = 0: u = 0, w = 0, (2.2a)

(2.2b)

t Such boundary conditions for a plane end are the so called "mixed" ones, i.e. one displacement component
and one stress component is prescribed for a plane end.

t Also in a recent paper [10] for a related cylinder problem such an eigenfunction expansion with its (bi)
orthogonality properties was exploited. But, unfortunately, the desire to escape the necessity to solve an infinite
set of equations led to an incorrect result (Appendix B).
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and for the finite cylinder

z = L/2: u = 0,
l+v

W = ---wE g'
(2.3a)

l+v
z = -L/2: u = 0, W = +TWg, (2.3b)

where azg is a given constant stress, while wg is a constant, such that at z = ± L/2 holds

Sol azr dr = -iazg.

The axisymmetric cylinder problem can be described with the aid of the two differential
equations of Navier-Cauchy for the displacement components u and w. Introducing the
Love strain function (t/J), these two equations may be reduced to one biharmonic equation
for t/J (see for this reduction for instance Biezeno-Grammel [16]):

V2V2 t/J = 0, (2.4)

where V 2 is the Laplacian operator in cylindrical coordinates:

a2 1 a a2

v2 = ~+- -;-+~. (2.5)
ur r ur uZ

The nonzero stresses and displacements, expressed in terms of t/J are:

(2.6a)

(2.6b)

(2.6c)

(2.6d)

(2.6e)

W = 1; v {2(1- v)V 2 t/J - ~:~}. (2.6f)

With the aid of(2.6) the boundary conditions (2.1) and (2.2) or (2.1) and (2.3) can be expressed
in terms of t/J. The biharmonic equation with these boundary conditions form the mathe
matical formulation of the problem.

3. A GENERAL SOLUTION FOR THE LOVE FUNCTION WHICH SATISFIES THE
CONDITIONS AT THE CURVED SURFACES

A solution of (2.4) for the strain function of the form

is tried.
t/J = M(y, r) e- YZ (3.1)



1030 J. P. BENTHEM and P. MINDERHOUD

Substitution in the biharmonic equation (2.4) yields:

(
d2 1 d ) 2
dr2 + r dr +y

2
M(y. r) = O.

The solution bounded at r = 0 is:

(3.2)

(3.3)

(3.4)

(3.5)

Satisfying the boundary conditions at the curved surfaces (2.1), two homogeneous linear
equations for HI and H2 are obtained. There will be only a non-zero solution when y is a
root of the equation:

y6[J~(Y)+ {l- 2(ly~V)}Ji(y)J = o.

Indicating the solution for the strain function resulting from the 6-fold root Yo = 0
with a superscript h, it becomes:

h 2 2 1- 2v ( 3v 2 J)t/J = b, +b2 1n r+b J z+b4 r +bsz +b6 -
6
(-- ~-2~r z+z .
I + v) 1- v

This function belongs to a homogeneous state of stress only. The related stresses and
displacements are

h 0'0
W = ~z+K

E '

(3.6)

where O'o( = b6 ) and K{ = (l +v)[8b4(I-v) +2bs(l- 2v)]/E} are constants.
The non-zero complex roots of the transcendental equation (3.4) are written as

Yh 1,2 ...). The absolute value of "Ii increases with increasing j. When "Ii is a root,
then also - Yi' Yi and - Yi are roots (a bar denotes the complex conjugate), i.e. for every j
there are four roots. The asymptotic formula for the roots "Ii stems from Dougall [17] in
1914; he found for large n:

In(4nn) i
Yn ~ nn -----+-In(4nn).

4nn 2
(3.7)

For small values ofj the roots Yi were computed by Prokopov [18] in 1950. Later Little and
Childs [9] gave those roots in more significant digits for some values of Poisson's ratio v.

Indicating the solution for the strain function resulting from the non-zero roots Yi
with a superscript e, we have:

Analogous to the approach of Little and Childs [9] a 4-vector f, related to stresses and
displacements, is expanded in a series of 4-vectors of eigenfunctions:

(3.9)
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A 4-vector <j)(Yj, r) of eigenfunctions consists of the following components:

<jY<!)(Yj, r) = [21'; J 1(I') - yJ J o(Yj)]J0(1'/) - yJ J 1(y)rJ 1(1'/),

<jP)(Yj, r) = y]Jl(y)rJO(Yjr)-yJJO(y)Jl(Yjr),

<jP)(Yj, r) = - YIll (y)rJ0(1'/) +[2(1- V)Y/ 1(1') +1';J o(y)JJ 1(yjr),

<jJ(4)(Yj, r) = [y;Jo(Yj)-2(1- v)Y/ l(y)JJO(y jr)+y;rJ 1(y)J 1(yjr).

1031

(3.10a)

(3.1Ob)

(3.1Oc)

(3.1Od)

(3.11 )

The following remarks are to be made on this eigenfunction expansion:
1. From the analysis of Little and Childs [9J may be concluded that indeed (3.8) is an

expansion in a complete set of eigenfunctions when it is possible to describe the
stresses and the displacements at the flat ends with the aid of Fourier-Bessel expan
sions or with the aid of Dini's series of Besselfunctions.

2. It is important to realize that, in principle, the summations in (3.8) and (3.9) have to
be done over the eigenvalues in the whole complex y-plane; so every j represents in
fact four terms, though, at least at the semi-infinite cylinder, finally the eigenfunctions
stemming from one half of the complex y-plane will be eliminated. This summation
over the whole complex plane is done in contrast with other approaches (like in [9J,
where the roots with Re(Yj) < 0 are eliminated immediately).

3. The stresses acting at a cross-section, which are to be described with the aid of the
eigenfunction expansion (3.8), are self-equilibrating:

fo
1

(J~r dr = O.

4. The (bi)orthogonality relations of the functions <jJ(i)(Yj, r) are insufficient to use
Fourier methods for analyzing the participation factors in a direct manner.

A general solution for the strain function in axialsymmetric problems on cylinders with
stress-free curved surfaces is the sum of (3.5) and (3.8). The unknown constants in this
solution have to be obtained with the aid of the conditions at the plane ends.

4. THE PARTICIPATION FACTORS a(y) WHEN THE VECTOR f IS KNOWN
AT A CROSS-SECTION

It would be possible to get an expression for the participation factors a(y) in (3.8) when
at a cross-section (say at z = l) all components of the vector f = fb(r) should be known.
Then (3.9) may be written as

00

fb(r) = L a(y)<j)(Yj,r)e- yjl
.

j= 1

(4.1 )

Little and Childs [9J developed a set of functions W(i)(Yj, r) (i = 1,2,3,4) biorthogonalt
to the functions <jJ(i)(Yj, r) when Re(y) > O. It is easy to check that their results are also valid
when Re(y) < O. So for all eigenvalues Yj holds the biorthogonality relation:

f W(Yk' r)· <j)(Yj' r)r dr = 0 ifYj # Yk, (4.2a)

= N(y) ifYj = Yk' (4.2b)

t Older work on the general theory for the development of vectors of eigenfunctions and their biorthogonal
counterparts is that of Birkhoff and of Langer (1939) and is discussed in some length by Kamke in his book [19].
For cylinder-problems Schiff [7J (1883) found a generalized orthogonality relation.
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(4.3a)

(4.3b)

(4.3c)

(4.3d)

N(Yj) = (1- v)[ - 4y/~(y) - 2y/i(y) +4(1- v)Jo(Yj)J I (Yj)] . (4.2c)

It be emphasized that in general the notation Yj refers to the four roots of (3.4) with equal
absolute values:

hI = ~j+i1Jj' Yj,2 = ~j-i1Jj' Yj.3 = -~j+i1Jj, YjA = -~j-i1Jj(~and1Jreal);

however, with condition (4.2a) is meant that Yj # Yk is also fulfilled for:

Yj = ~j+i1Jj and Yk = ±~j-i1JjOryk = -~j+i1Jj'

The biorthogonal vector W(Yj' r) has the following components:

W(1)(Yj, r) = ([yjJo(Yj) - 2(1- v)J 1(y)]Jo(yjr)+ Y/ 1(y)rJ 1(yjr))/{ 2y/i(y)} ,

W(2)(Yj, r) = {yjrJ 1(Yj)Jo(Y/) - [2(1- v)J 1(y) +Y/o(y)]J 1(y/)}/{2y/i(y)} ,

W(3)(Yj, r) = {- yJrJ 1(y)Jo(yjr) + yJ J o(y)J 1(Y/))/{ 2y/i(y)} ,

W(4)(Yj, r) = ([2y/ I(Y) - yJ J o(y)]Jo(Y/) - y7J 1(y)rJ 1(y jr)}/{2Y/i(Y)} .

By use of the biorthogonality relation now all the participation factors indeed are obtained:

a(y) = ;;~~)f {W(1)(Yj, r)!b1)(r) + W(2)(Yj, r)!b2)(r)+ W(3)(Yj, r)!b3)(r)

+ W(4)(Yj, r)!b4)(r)} r dr. (4.4)

5. THE SEMI-INFINITE CYLINDER

The solution given in Section 3 satisfies the boundary conditions (2.1). The boundary
conditions (2.2) are now resolved into two conditions for the general solutions (3.6) and
(3.8):

z = 0: u == ue +uh = 0, (5.1)

(5.2)

From (5.2) and (3.11) follows the homogeneous solution:

(J~ = - (Jzg;
h h h O.

(Jr = (J '" = !rz = ,

h (J"g 1+ vw = -~·-z+--K
E E'

(5.3)

where K is an unknown constant, such that the eigenfunction expansion (3.8) is possible.
Our problem is now reduced to: find the participation factors a(y) in the eigenfunction

expansion (3.8) and the constant K such that the following conditions are satisfied:

z -> etJ : ljJe -> o.

E
_-we = -K'
l+v '

(5.4)

(5.5)
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However in no cross-section all the four components of the vector f are known, so that
the participation factors cannot be obtained directly from expression (4.4). Yet it is possible
to use this expression when we describe the lacking components O"~ and r:z at z = 0 with
the aid of series. In doing so, it must be realized that there may occur a stress singularity
in the corner at (z = 0, r

O= 1). Along the lines ofAppendix A it is concluded that the stresses
become infinite exponentially when the distance from the corner tends to zero. So the
stresses in the corner can be described with great accuracy by

where A is a constant with 0 < A < 1 satisfying equation (A.9), while the constants c\ and C2

are related by equation (A.11). The series for the stresses at z = 0 are now formed in such a
way that the stress singularities are described accordingly. For z = 0,0 ::; r < 1 we take:

00

O"~ = O"z-O"~ = -c1{(1-r)-'<+A(1-r)} +O"zg- L bmJ o(/1mr),
m=l

(5.6a)

00

r:z = rrz-r~z = c2{(1-r)-'<-(1-r)-tA(A+l)(r2 -r)}+ L dnJ 1(Knr), (5.6b)
n=l

where

(5.6c)

/1m is the mth root of J 0(/1) = 0,

Kn is the nth root of J 1(K) = O.

In this way the unknown functions are expressed in terms of the unknown coefficients
cl' bm , dn · Some remarks about these expressions have to be made.

1. When r = 0 there may occur discontinuities in the third and higher derivatives of
O"~ and in the fourth and higher derivatives of r:z ' It is possible to describe the stresses
with functions which are everywhere continuously differentiable by another assump
tion for the terms with c1 and c2 . Yet the description (5.6) is chosen, for this will lead
to simpler calculations.

2. The infinite series in (5.6) are chosen as Fourier~Bessel series to simplify the calcula
tions.

3. It is also possible to describe the stresses O"~ and r:z with Fourier-Bessel expansions
only, though in a very slowly convergent way. The slow convergence is caused by
the stress singularities. In description (5.6) the singularities are eliminated from the
infinite number of terms of the Fourier-Bessel expansion. This has the advantage
that the remaining series in (5.6) are rapidly convergent. However, the set offunctions
used here becomes overcomplete when all the infinite terms of the Fourier-Bessel
expansions are considered. This will cause restrictions to the solution to be obtained.

4. Expansion (5.6a) has to satisfy condition (3.11). This leads to one condition between
the constants c1 and bm •

With the aid of the series expansions (5.6) for the stresses at z = 0 and with the given
displacements (5.4) at z = 0 a vector fb(r) may be composed. After substitution in (4.4) the
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(5.7)

participation factors aIr) are known in terms of the unknown constants c I , bm , dn :

a(y) = N(l,,_) JI {w< Il(Yj' r)(O'~)z= 0 + W(2 J()'j, r)(,~z)z = 0 ---v-O'ZgrW(3 J(Yj, r)} r dr.
Ij 0 I+v

Note that in (5.7) the term with W(4) drops because

f W(4)(Yj, r)r dr = O.

These relations between a(y) and the unknown constants are valid for both Re(y) > 0 and
Re(y) < O. However the remaining condition t/Je ---+ 0 for z ---+ 00 (5.5) requires:

a(y) = 0 if Re(y) < O. (5.8)

The conditions (5.7) and (5.8) deliver the set of infinite equations for the unknown coefficients
in the series expansions for the stresses at z = 0:

if Re(y) < 0 (j = 1,2,3, ...), (5.9)

while

[Remember, every j in (5.9) delivers two equations arising from Yj = (j ± il1j.] Using the
series expansions (5.6) for the stresses at z = 0, the integrals in (5.9) resulting from the singu
larities in the stresses are to be developed into usual power series or in asymptotic series.
The other integrals are easily to be computed in a direct manner.

The infinite set of equations (5.9) in CI' bm , dn is solved by taking only a finite number of
unknowns, putting the others zero. Calculations are performed for Poisson's ratio v = 0·25.
The number of unknowns was taken successively 3, 5, 7, 9 and II. In the last case the
unknowns were cI,hl,dl,b2,d2,b3,d3,b4,d4,bs,ds' Using these solutions in the series
(5.6) the stresses 0'z( = O'~ + O'~) and 'rz( = '~z + ';z) at z = 0 are computed for 0 ::;; r ::;; 1. The
successive approximations are given in Tables I and 2. The convergence to a final result is
obvious. Figures I and 2 give graphs of the stresses 0'z and 'rz at z = 0; they are based on
the best values of Tables I and 2, respectively.

As stated earlier the stresses at z = 0 (5.6) are described with the aid of overcomplete
sets of functions. When the number of unknowns in the procedure of solving the infinite
set of equations is not great, then the linear independency of the terms with the stress
singularity and the Fourier-Bessel terms ensures rapid convergence to the results. Taking
the number of unknowns infinite, then the matrix of coefficients of the equations (5.9) will
be singular, owing to the overcompleteness of the set of functions taken in (5.6). So the
matrix of coefficients becomes more and more ill-conditioned by taking the number of
unknowns in the procedure of solving the infinite set of equations higher and higher. Then
computer-computations become impossible; the convergence of the results breaks down.
This explains why not many unknowns are tried. Besides, in view of the results already
obtained, this is not necessary.
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TABLE I. THE STRESS RATIOS {Jzl{Jz~ AT z = 0; v = !; ;. = 0·25525

No. of unknowns used

3 5 7 9 11

+0-000 -0-9253 -0·8689 -0·8881 -0-8874 -0·8770
+0-200 -0-9165 -0·8779 -0·8845 -0·8856 ~0-8870

+0-400 -0·8960 -0·8949 -0·8872 -0·8868 -0·8872
+0·600 -0·8821 -0·9044 -0·9038 -0·9025 -0-9011
+0·800 -0·9264 ~0-9374 -0·9432 -0-9452 -0-9463
+0-900 -1·0426 -1-0355 -1-0364 -1-0371 -1·0372
+0·980 -1·5146 -1·4820 -1-4740 -1-4715 -1-4706
+0·990 -1-8017 -1-7605 -1-7499 -1·7465 -1-7454
+0·995 - 2-1475 -2-0972 - 2-0839 -2-0797 -2-0783
+0·999 -3-2357 -3-1587 -3-1383 - 3-1317 - 3-1295

+ 1-000 -0·55482 -0·54160 -0-53808 -0-53694 -0-53657
(I-r)-.l (l-r)-l (l-r)-.l (l-r)-.l (l-r)-.l



From the results in Tables I and 2 it is ascertained that the ratio 1<,zll1zl at z = 0 ensure
indeed the condition w = 0 provided the coefficient of friction between stamp and cylinder
is greater than 0.257 [being the c1lc 1 ratio of (5.6c) and (A. I I)].

The participation factors a(Yj) may now be computed with the aid of (5.7) for all eigen
values Yj with Re(y) > 0, while a(y) = 0 for all eigenvalues Yj with Re(Yj) < O. It is also
possible to find the constant K with the aid of the eigenfunction expansion for we at z = O.
Subsequently all the stresses (when z =I 0) and all the displacements in the cylinder may be
computed with the aid of the homogeneous state of stress and the eigenfunction expansions.
Also these series showed very good convergency to final values.

6. THE FINITE CYLINDER

The solution given in Section 3 satisfies the boundary conditions (2.1). Splitting up the
boundary conditions (2.3) to adapt them to the solutions (3.6) and (3.8) learns that the
homogeneous solution, which satisfies the symmetry with regard to z = 0, is:

11~ = -l1zg ; h h h 0
11, = 11 </J = <rz ;

I1zg--z
E

(6.1)

and that the participation factors a(y) in the eigenfunction expansion (3.8) and the constant
wg must now follow from the conditions:

L E I1zg 1
Z = +-: We = -W +--~L

2 l+v g 1+v 1
'

L E I1 zg 1
Z = __ :__W e = w ----L,

2 l+v g 1+v 1

(6.2a)

(6.2b)



The problem of the solid cylinder compressed between rough rigid stamps 1037

As in Section 5 the stresses u~ and r~z at z = L/2,0 S r S 1 are described with the aid
of the series expansions (5.6). This description has no sense when the cylinder is very short.
It is known by the principle of De St.-Venant that in that case there is hardly any influence
of the curved surface on the solution for r < tD L, where D is the diameter of the cylinder.
Consequently the stresses u~ and r~z must be almost constant in that region and the terms
with the stress singularities in (5.6) do not form any more the proper first approximation.
Good results were only obtained when the length-diameter ratio was greater than O·I.

After the composition of the vector fb(r) at z = - L/2 and substitution in (4.4) the
participation factors in terms of c1, bm , dn become:

a(y) = e~~~~;2 f {(U~)z ~ _L/2 W(1)(Yj, r)+ (r~z)z - L/2 W(2)(Yj, r) - 1: vuzgrW(3)(Yj, r)} r dr.

(6.3)

Again these relations are valid for both Re(y) > 0 and Re(Yj) < O.
The symmetry of the cylinder with regard to the plane z = 0, requires:

(6.4)

To satisfy both (6.3) and (6.4) we have again a system of infinite equations for the unknown
coefficients in the series expansions for the stresses at z L/2. Using the relation
N(Yj) = - N( Y) these equations are:

V (3) }---uZgrW (-Yj,r) rdr,
1+v

while f u~r dr = O.

j = 1,2,3 ... (6.5)

[Remember, every j in (6.5) delivers two equations].
As in Section 5 the unknown coefficients in the series expansions (5.6) for the stresses at

z = - L/2 may now be solved. In Fig. 3 the results for the strength of the singularity (c 1)

is shown in dependency of the length-diameter ratio of the cylinder when v = !.
After the solution of the unknowns C1 , bm and dn , the participation factors a(Yj) may be

computed with the aid of (6.3) if Re(Yj) > 0 and with (6.4) if Re(Yj) < O. Subsequently the
stresses and displacements in all points of the cylinder may follow. In the calculations
which were performed, again very good convergency was observed.
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APPENDIX A

W39

The stress singularity at the circuniference of the plane surface ~r the cylinder

The Navier-Cauchy equations for the displacement components of the cylinder are

o{I o(ru) OW} 0(ou ow)(2-2v)- - --+- +(l-2v)- --- = 0,
or r or iJz iJz oz or

(2-2V)~{~ o(ru)+~~} _(l-2v) ~{r(OU_~w)} = 0.
oz r or oz r or oz or

(Ala)

(Alb)

The homogeneous boundary conditions of the cylinder along the sides of the corner
z = 0, r = 1 are

z = 0,

r = 1,

u = 0,

w= 0,

'rTZ = °

OU U ow
or(l-v)-+v-+v- = 0,

or r oz

au ow
or-·+-=O.oz or

(A2a)

(A.2b)

(A2c)

(A2d)

In the corner z = 0, r = 1 a local polar coordinate system p, (J is introduced with the
relations

r = I-pcos 0,

z = p sin 0,

a a I. 0
- = -cosO--+-smO
or op p iJ()'

6 . i) cos06
-= smO-·+---
OZ iJp p iJfJ'

U = -ul1 cos O+uesin fJ,

w = up sin O+uecos fJ,

~ = 1+pcosO+p2cos20+p3cos30+ ... ,
r

(A3a)

(A3b)

(A.3c)

(A.3d)

(A3e)

(A3f)

(A.3g)

where up and U8 are the displacement components in the polar coordinate system.
Together with the introduction of (A3) into (AI), (Al) a solution for ul>and U8, at least

valid for small values of p, is tried in the form

u = pl-A+ftl'('()
p.n In ,

n = 0, 1,2,3 ... (A.4)

(AS)
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We separate those parts of the equations which concern up and Uo with the lowest
powers in p, i.e. pi - i. and have the equations

(2-2V)~{~o(pup,o)+~ ouo,o} 1 2v ~{O(puo,o)
op p op p 00 00 op

(2 - 2v)~ ~ {O(PUp,o) +ouo,o} +(1- 2V)~[~{0(Puo,o)
p2 0(J op 00 op p op

(J = 0, up,o = 0,

uo,o = 0,

oUp,o 1- v( ouo,o) _ 0
op + P up,o + 0(J - ,

oup,O} = 0
00 '

oup,o}] = 0
oe '

(A6a)

(A.6b)

(A.7a)

(A.7b)

(A.7c)

(A.7d)oUp,O + oUo,c:J. _ uo,o = o.
poe op p

But (A.6), (A7) are exactly the homogeneous equations for the wedge in plane strain,
one side (e = 0) fixed, one side «(J = n12) stress free. This problem was solved by Knein [3J
and later by Williams [4].

We put

up,o+iuo,o = pl-AA{(3 4v)eiO(1-A)_(l_A)eiO(IH)}+pl-ABe-iO(1-A) (A8)

which has the shape (A.5), n = 0, and satisfies (A.6). The boundary conditions (A.7) deliver
homogeneous equations for the complex constants A and B and Amust be a root of

2(n) 4(1- V)2 (1 - Al
cos A- = --.

2 3-4v 3-4v

The stresses (fo and 'pO from the displacements up,o and uo,o are

2G {OUp,o 1 v( ouo,o)}
(fo = 1-2v v----a;;-+p up,o+i30 '

, I) = G(oup,o +OUI),O +UI),o)
p poe op p

and they have the exponents - Ie.
Along e = O(z = O)(fl) = (f" 'pO = -'rz and their ratio is

(
'rz) A+1-2v (,n)- - = tg ,.1-
(fz Z~O -A+2-2v '2'

r~ I

(A.9)

(A. lOa)

(A. lOb)

(All)

A root A from (A.ll) with real part greater than 1 would lead to infinite strain-energy
in the corner region (and infinite resultants of stresses). The gravest root which has to be
regarded is (v {)

A. = 0·25525, (AI2)

the next gravest root A. = - 0·718 ± 0-474i is considered to be oflittle interest for the series
developments of (5.6).
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A solution up,o; uo,o (for certain A) once obtained should allow to compute (with much
effort) a solution for Up,1 ; UO,I in the development (A.4), (A.5) and so on. The exponent of
the stresses stemming from up, I ; UO,! is, however, only - A+ 1 and is also of no interest for
our purpose.

APPENDIX B

Comment on the paper by W. Fliigge and V. S. Kelkar [10]

Fliigge and Kelkar deal with a semi-infinite cylinder, which has no prescribed (zero)
stresses along its curved surface, but prescribed (zero) displacements and which has
prescribed displacements along its plane end. With that case they demonstrate their
recommended general method for semi-infinite cylinders.

Also the cylinder with zero-displacements along its curved boundary has its 4-vectors
of eigenfunctions with eigenvalues Yj and their counterparts, the 4-vectors ofbiorthogonal
functions which are derived by the authors in the proper way. It may be then possible to
develop an arbitrary set of 4 functions (which are of bounded variation) in the range
o < r < 1 in an expansion of the eigenfunctions.

Also the authors of [10] have struggled with the lack of two boundary conditions at the
plane end of the semi-infinite cylinder, only two boundary conditions being known. These
latter conditions are notated here as

(8.1)

U and ware displacement-components in radial and axial directions and!! and!2 are known
functions.

The lacking boundary conditions for two differential-expressions of the displacements
U and w, say D3(u, w) and Diu, w), are not expressed with the aid of series with unknown
parameters as is done in our Sections 5 and 6, but in the equations for D3(u, w) and D4(u, w)
arbitrarily two zero right-hand sides are chosen

(B.2)

An expansion of the set of functions!1 (r),fz(r), 0, 0 in vectors of eigenfunctions follows.
In this expansion only half of the eigenvalues are used. The other half was intentionally

omitted because these would lead to infinite stresses at infinity.
Generally to fulfill four conditions for u, w, D3(u, w), D4(u, w) like in (B.1) and (8.2)

all eigenvalues with their 4-vectors of functions are necessary. It cannot be proved that for
an arbitrary choice for the right-hand sides of (8.2) only the use of half of the eigenvalues
with their 4-vectors of functions would be sufficient (it should be remembered that the
omitted 4-vectors of functions are linearly independent of the used ones).
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Thus it cannot be proved that the expansions obtained (with half of the eigenvalues)
deliver indeed the result

II =fl(r)

w = f2(r)

D3(u, w) = 0

D4(u, w) = 0

or even only (which would even suffice)

(B.3)

(BA)

u = fl(r)

w = f2(r)

D3(u, w) = /3(r)

D4(u, w) = 1~(r)

where 13 and 1~ are some non-zero functions. Neither are results like (B.3) or (B.4) demon
strated in a numerical example.

It is true that in our work the underlying principle involves a similar expansion in
eigenfunctions with only half of the eigenvalues, but following that principle one should take
for the right-hand sides of (B.2) the actual ones, which, however, are not known in advance.
Such right-hand sides [of (5.6)J we provided with initially unknown parameters which
allowed these right-hand sides to become the actual functions (after the solution ofan infi
nite set of equations). Only for the actual right-hand sides of(B.2) it can be proved that the
expansion with only half of the eigenfunctions delivers the desired result.

Indeed it is explained in [I OJ that the obtained eigenfunction expansion is not unique
and depends on the chosen right hand sides of (B.2), but it was believed that the state of
stress it represents is nevertheless unique, but clearly this is not proved for the region of
the prescribed boundary conditions itself.

The leading term of the expansion for the stresses is also not unique. At some distance
from the finite end (of the order of some diameters) this leading term will overwhelm the
sum of all the others and so the state of stress is not unique there as well.

(Receired 22 ./ulle 1971 ; raised 21 Decemher 1971)

A6cTpaKT-OIlIfHHaL\uaTb TOfIKOCTeHHblX amOMlffllfeBblX UHJlHHLlPOB C npjjMoyronbHblMH Bblpe1aMIf

rrollBepraJlIf IfcnblTaHlf10 Ha ClKaTlfe no OCH. rlPI1 "leM Bblpe1bl ceMH o6pa1uoB nOll I1CnblTaHHeM yCI1JlI1JlI1

pa3JlH"lHbIM apMHpOBaHHeM. Pe3YJlbTaTbi HcnblTaflHSI cpaBHHBaJlIf C nOJlY"leHHbIMH pe3ynbTaTaMH rrplf

KpI1TIf"leCKoj:! npOIlOJlbHOj:! Harpy1Ke UI1JlHHllpa 6e3 apMHpOBaHHSI Bblpe30B If C npellcKa3aHHblMH Bbl"lHCJlH

TeJlbHoj:! MaWHHoj:! HarpY1KaMIf pa1pyweHIoUI.

rlPIf TaKHX TOHKOCTeHHblX UHJlHHlIpaX, IfcnblTaHHii H aHaJllf1 Bbl"lHCJlHTeJlbHoj:! MaWIfHbl nOKa1blBalOT,

"ITO YCIIJlellHe He60JlbWIIX II cpellHHX Bblpe10B 06bl"lHO 6ecnone1HO, T.K. 3TO nOMoraeT TOJlbKO B cJlY"lajjx,

ecml UHnllHIlPbl CKOIICTpYllpoBaHbl H1 "lpe1Bbl"lai1l1o BbICOKOKa"leCTBeIlHoro MaTepHana. 06CYlKilalOTCjj

cpaBHHTeJlbHble L\OCTOIIIICTBa pa1nl1"lHblX ¢JOPM YCHJleHI1j:! Llnjj BbICOKOKa"leCTBeHllbIX UHnHHLlPOB C pa3JlI1"l

HbIMH Bblpe1aMM YCI1Jlelllle KOTOPbIX uenecoo6pa1HO H npellJlaraeTCjj 3MneplI"leCKI1j:! 6a1HC KOHCTpyKUHIf.


